# Measuring Thrombopoietin - 2012 A New Tool for Hematologists?



Mervyn A. Sahud, M.D. A.B.I.M.-Hem. Medical Director, Coagulation Department Quest Diagnostics Nichols Institute San Juan Capistrano, CA



#### Medical Director, Coagulation – Quest Diagnostics Nichols Institute, San Juan Capistrano, CA



Confidential – Do not Copy or Distribute 10/11/2012

# Doctor James Homer Wright (1869 – 1928)



#### James Homer Wright Established The Basic Elements Of Thrombopoiesis In <u>1906</u>



10/11/2012

# Sir William Osler (1849 – 1919)





#### Medicine at the bedside



Confidential - Do not Copy or Distribute

10/11/2012





0. 7 D) DIJ





# Doctor Endre Keleman (1921-2000)



#### Dr. Endre Kelemen Described Human Thrombopoietin In <u>1958</u>



Confidential - Do not Copy or Distribute

#### Dr. Kenneth Kaushaunsky



#### **Dr. David Kuter**



# **Thrombopoietin Structure**

#### The Structure of Human Thrombopoietin





# **Relationship Between The Platelet Count (•) and** <u>**The Thrombopoietin Concentration (D**).</u>



A rabbit was made thrombocytopenic by the administration of busulfan on Day 0 and platelet counts and thrombopoietin levels measured thereafter.

# **Early Studies on Thrombopoiesis**



The Journal of Hematology

JULY, 1960

VOL. XVI, NO. 1

#### Studies on Thrombopoiesis. I. A Factor in Normal Human Plasma Required for Platelet Production; Chronic Thrombocytopenia Due to its Deficiency

By IRVING SCHULMAN, MILA PIERCE, ABBY LUKENS AND ZINET CURRIMBHOY

#### SUMMARY

- A case of chronic thrombocytopenic purpura has been presented in which the pathogenesis appears to be due to congenital deficiency of a platelet-stimulating factor.
- The factor exists in normal plasma and is stable on storage under normal blood banking conditions and on freezing.
- The factor appears to act by stimulating megakaryocyte maturation and platelet production in an orderly and sequential manner.



Confidential - Do not Copy or Distribute

# **The Harrington–Hollingsworth Experiment**



Graph shows rapid development of thrombocytopenia, followed by a return to normal platelet levels, in healthy volunteers who received plasma from patients with idiopathic thrombocytopenic purpura

10/11/2012

A 42 year - old woman with refractory immune thrombocytopenia (ITP) presents for a second opinion to a university hematologist after Undergoing an extensive treatment regimen including high dose dexamethasone, intravenous immunoglobulin and rituximab.

#### Lab Results:

- Platelet Count: 11,000 /µl<sup>3</sup>
- Hemogram otherwise: Normal
- Mean Platelet Volume: 12.4 /fl (n. 7.5 11.5)
- Direct Glycoprotein Antibody (IIb/IIIa): Strongly Positive
- Blood Smear: No Schistocytes
- Immunoglobulins: Normal
- Serology for Epstein-Bar: Negative
- Hepatitis C: Negative
- Helicopter Pylori: Negative
- Protein Electrophoresis: Negative
- Splenectomy offered: Patient declined



#### **<u>Clinical Course:</u>**

The hematologist offers her a T.P.O. mimetic, Eltrombopag or Romiplastin which stimulates "Megakaryocytopoiesis". A serum thrombopoietin level is drawn and comes back 621 pg/ml (n. < 99 pg/ml).

After 3 weeks of Romiplastin (1 mcg/kg), the platelet count remains low at 14,000  $\mu$ l<sup>3</sup> (n. 150 – 400 x10<sup>3</sup>). The dosage of Romiplastin is increased to 10 mcg/kg without response at week # 12.

#### Final Decision:

A splenectomy is performed without incident and the platelet count is  $151,000 / \mu l^3$  at month 9 after surgery.



# What is the value of the elevated TPO level in this patient?

- The TPO level has no value in this case
- The patient has a thrombopoietin producing tumor
- The assay for TPO is faulty due to poor Quality Control
- The patient has a marked elevation of erythropoietin (EPO) which is cross reacting with the TPO assay



# **Thrombopoietin Levels in Blood Disorders**



| Category (n)                               | Mean Age<br>(yrs.) | Female<br>(%) | Specific Diagnoses (n)                                                                                             |
|--------------------------------------------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------|
| Consumptive<br>Thrombocytopenia (39)       | 51 (21-83)         | 24 (62%)      | Primary or Secondary ITP (36)<br>Thrombotic Thrombocytopenic Purpura (2)<br>Antiphospholipid Antibody Syndrome (1) |
| Hypoproliferative<br>Thrombocytopenia (49) | 58 (31-87)         | 22 (45%)      | Chemotherapy-Related (29)<br>Primary or Secondary Bone Marrow<br>Failure Syndromes (20)                            |
| Myeloproliferative<br>Disorders (34)       | 65 (28-88)         | 20 (59%)      | Essential Thrombocytosis (20)<br>Polycythemia Vera (10)<br>Myeloproliferative Disorder NOS (4)                     |

Makar, R., Zhukov, O., Sahud, M. and Kuter, D. submitted for publication 2012

# ANSWER.....

- Elevated TPO levels found in patients with ITP are less likely to respond to TPO mimetics drugs.
- Some ITP patients have elevated TPO levels suggesting that inadequate megakaryopoiesis is the predominant pathological feature

|           |              | Clinical Response <sup>†</sup> |                  |  |
|-----------|--------------|--------------------------------|------------------|--|
|           |              | YES                            | NO               |  |
| TPO Level | ≤ 95 pg/mL   | 14                             | 1                |  |
|           | > 95 pg/mL   | 1                              | 8                |  |
|           | Median (IQR) | 49 (34 - 66)                   | 1001 (110 -1752) |  |

# **Thrombopoietin:** Why Should We Measure It?

- Patients with high TPO levels do not respond to TPO mimetic's
- Reimbursement for TPO mimetics may hinge on "normal" TPO levels prior to treatment

# Methods of Measuring TPO:

- Home brew assay
- C-MPL responsive assay
- First market advantage



RL, a 73 year - old man has a history of Thrombocytosis, with an initial platelet count of 1,730,000 with normal Hct and WBC. He is treated with Hydrea. The diagnosis is Essential Thrombocythemia (JAK2-neg). He remains on Hydrea at a dose of 500-1000 mg /day for over 3 months. His platelet count falls to 450,000/µl<sup>3</sup>.





- Four months into therapy his platelet count is now 150,000/µl<sup>3</sup>. The Hydrea is discontinued, but over the next 3 months the platelet count continues to fall to 3,000 /µl<sup>3</sup>.
- Patient receives platelet transfusions and bleeding is reduced.
- Diagnosis is uncertain. Treatment includes steroids, IVIG and Winrho.
- Referred to University Hospital for consideration of splenectomy or Thrombopoietin mimetic.





### **Lab Results**

- Exam / diffuse ecchymoses, no splenomegaly, normal WBC count 3,900 and Hematocrit 41%
- Platelet count 5,000 / $\mu$ l<sup>3</sup> and many large forms noted on smear.
- Would a TPO level be of value in this patient?
  - No, the patient requires a splenectomy as soon as possible
  - No, the patient is surreptitiously taking Hydrea:
    - » Obtain Plasma Hydrea level
  - No, the patient is septic: draw 3 blood cultures



#### ANSWER:

■ TPO level is 1,500 pg/ml (N. ≤ 75): Suggesting Bone marrow failure



- Bone marrow is deferred and Romiplastin is not given
- 3 months later the platelet count has slowly returned to  $115,000 / \mu l^3$

#### **DIAGNOSIS**:

• Idiosyncratic reaction to Hydrea....?

A 39 year-old woman presents for hematologic evaluation at SMC with elevated platelet count.

#### **History**

- An elevated platelet count was detected at age 19
- Transient ischemic attack 4 years ago (Platelet count 1.4 million μl<sup>3</sup>)
- Treatment for the last 18 months previously included:
  - Anegrelide, Interferon- $\alpha$  and Hydrea 500 mg
- Denies fever, sweating , weight loss, early satiety or vasomotor symptoms
- P.E. No splenomegaly or bruising

#### Lab Results (at Stanford in March 2010):

- Platelet count 1,015,000/  $\mu$ l<sup>3</sup> (without other abnormalities)
- WBC 3,700: 42% neutrophils
- Hemoglobin 11.6 gm/dl
- Peripheral blood smear occasional large, hypogranular platelets.
- Reactive causes of thrombocytosis excluded
- Examination normal
- *JAK2* V617F mutation analysis negative





# THIS CASE REPRESENTS A TYPICAL PRE-FIBROTIC STAGE OF ESSENTIAL THROMBOCYTHEMIA

# EXCEPT... IT ISN'T!!



Confidential – Do not Copy or Distribute 10/11/2012

# **Case Study # 3: The Art of History Taking**

#### **Clinical Course:**

# A first year medical resident comes in to take a thorough history. **Doctor:**

"Are there any blood disorders in your family?"

#### Patient:

"No, but my sister has high platelets also."

#### **Doctor:**

"Do you have children?"

#### Patient:

"Yes, I have a boy age 9 and a girl age 11. They both have elevated platelet counts....so it must be catching!"

#### **Doctor:**

"Well, does your husband have elevated platelets?

#### Patient:

"Oh No! and no other family members have it, except my mother"



- Hereditary Thrombocythemia (HT) is suspected
- THPO or MPL mutations are investigated
- Serum TPO Levels are drawn in family members



# **Thrombopoietin Signaling**



# **Case # Study 3: THPO Germline Gene Mutation**



# **Case Study # 3: Summary of THPO in HT**

- To date, five HT families with three distinct THPO mutations have been published, including Dutch, Japanese, and Polish pedigrees.
- No consistency in reports of thrombosis or clinical outcomes; our proband maintained on ASA
- In all cases, the mechanism of overproduction of platelets is related to alteration of the 5' UTR of the *THPO* gene which results in enhanced translation of thrombopoietin (TPO) mRNA.



# **Case Study # 3: MPL Mutations in HT**

| <b>MPL</b> W515L/K Mutation Frequency in Acquired                            | MPNs   |  |  |  |
|------------------------------------------------------------------------------|--------|--|--|--|
| Essential thrombocythemia                                                    | ~1-5%  |  |  |  |
| Primary myelofibrosis                                                        | ~5-10% |  |  |  |
|                                                                              |        |  |  |  |
| <b>MPL</b> Mutations in Hereditary Thrombocythemia                           |        |  |  |  |
| <i>MPL</i> Ser505Asn (S505N)* Japanese <sup>1</sup> , Italian <sup>2,3</sup> |        |  |  |  |

MPL Pro106Leu (P106L) A

Arab<sup>4</sup>

\*Rare frequency in PT-1 Cohort

<sup>1</sup> Ding J, et al, Blood. 2004.

<sup>2</sup> Teofili L, et al. J Clin Oncol. 2007

<sup>3</sup> Liu K, et al. Haematol. 2009.

<sup>4</sup> El-Harith HA, et al. Haematol. 2009.

Confidential - Do not Copy or Distribute



# **Gene Mutations**

| Authors                                     | Gene mutation                                         | Consequence                                                               |
|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|
| Wiestner <sup>29</sup>                      | TPO, G>C in intron3 position +1                       | Loss of uORF-mediated repression <sup>29</sup>                            |
| Kondo, <sup>30</sup> Ghilardi <sup>32</sup> | TPO, deletion of G in 5'-UTR                          | Loss of uORF-mediated repression <sup>32</sup>                            |
| Ghilardi <sup>31</sup>                      | TPO, G>T in 5'-UTR                                    | Loss of uORF-mediated repression <sup>31</sup>                            |
| Jorgensen <sup>33</sup>                     | TPO, A>G in intron3 position +5                       | Not studied                                                               |
| Ding <sup>80</sup>                          | MPL, G>A in exon 10 resulting in S505N in Mpl protein | Constitutively active MpI protein                                         |
| Moliterno <sup>53</sup>                     | MPL-K39N                                              | Co-dominant, mild thrombocytosis in homozygotes, function uncertain       |
| El-Harith <sup>55</sup>                     | <i>MPL</i> -P106L                                     | Co-dominant, elevated Tpo serum levels                                    |
| Kawamata <sup>51</sup>                      | MPL-S204F                                             | Found in uniparental disomy 1p, function uncertain                        |
| Williams <sup>49</sup>                      | MPL-S204P                                             | Function uncertain                                                        |
| Komatsu <sup>41</sup>                       | <i>MPL</i> -S505N                                     | Constitutive activation of Mpl protein, autosomal dominant thrombocytosis |
| Chaligne <sup>50</sup>                      | <i>MPL</i> -A506T                                     | Function uncertain                                                        |
| Chaligne <sup>50</sup>                      | <i>MPL</i> -L510P                                     | Function uncertain                                                        |
| Pikman <sup>44</sup>                        | <i>MPL</i> -W515L                                     | Constitutive activation of Mpl protein, sporadic ET or PMF                |
| Pardanani <sup>44</sup>                     | <i>MPL</i> -W515K                                     | Constitutive activation of Mpl protein, sporadic ET or PMF                |
| Vannucchi <sup>46</sup>                     | <i>MPL-</i> W515A                                     | Constitutive activation of Mpl protein, sporadic ET or PMF                |
| Chaligne <sup>50</sup>                      | <i>MPL</i> -A519Y                                     | Function uncertain                                                        |
| Kawamata <sup>51</sup>                      | <i>MPL-</i> Y591D                                     | Found in uniparental disomy 1p, function uncertain                        |

# **Reactive Thrombosis**



Diagnostics

Confidential – Do not Copy or Distribute 10/11/2012

# What Do These Case Studies Tell Us Today?

#### In case #1:

 We learned that serum thrombopoietin may give further insight into the nature of I.T.P. and perhaps save \$1200 per month for a treatment that is unlikely to yield results.

### In case #2

 We find out that serum thrombopoietin may allow one to predict imminent platelet recovery in a patient with a Hydroxyuea-induced hypoplastic marrow.

#### In case #3

 The features of Essential Thrombocythemia suggesting a Myeloproliferative Disorder may in fact be hereditary In nature and that data is emerging that high platelets are risk.factors for D.V.T. and P.E.

# **THANK YOU**



Confidential - Do not Copy or Distribute

10/11/2012

# References

Bussel JB, Cheng G, Saleh MN, et al.Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura.N Engl J Med. 2007;357:2237-2247.

Kuter DJ, Bussel JB, Lyons RM, et al. Efficacy of Romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomized controlled trial. Lancet. 2008;371:395-403.

Kuter DJ.

New thrombopoietic growth factors. Blood. 2007;109:4607-4616.



# References

George JN.

Management of patients with refractory immune thrombocytopenic purpura. J Thromb Haemost. 2006;4:1664-1672.

Kaushansky K.

Historical review: megakaryopoiesis and thrombopoiesis. Blood. 2008;111:981-986.

Ballem PJ, Segal GM, Stratton JR, Gernsheimer T, Adamson JW, Slichter SJ. Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. J Clin Invest. 1987;80:33-40.

